

DEFESA MEDIADA POR FUNGOS NA PREDAÇÃO DE A. aculeata (ARECACEAE) POR BRUCHINEA (COLEOPTERA, CHRYSOMELIDAE)

Ane Karoline Campos Fernandes¹, Anielle Cristina Fonseca Pereira¹, Gleicielle Rodrigues Mota¹, Maurício Lopes de Faria¹. ¹Universidade Estadual de Montes Claros - Laboratório de Ecologia e Controle Biológico de Insetos.

INTRODUÇÃO

As interações ecológicas desempenham um papel central na evolução e na manutenção das espécies, na sucessão ecológica e nos fluxos de energia (Thompson 1999, Price *et al.*, 1980). As interações entre duas espécies podem ser indiretamente mediadas por outra espécie (Miller & Kerfoot 1987, Price *et al.*, 1980). Dentre estas interações se destacam as que envolvem microorganismos hospedeiros de plantas, incluindo fungos micorrizos, endofiticos e bactérias afetando o desempenho dos herbívoros através da produção de toxinas que acumulam no tecido da planta (Saari, 2010). Essas associações podem mudar a direção das interações entre predador-presa, sendo que o fungo pode tanto oferecer resistência ao ataque de alguns herbívoros, como falhar na proteção da planta. A complexa rede de interações diretas e indiretas determina não somente a abundância de uma espécie individual, mas também as características da comunidade como a diversidade e estabilidade (Torres-Alruíz & Rodríguez 2013, Miller 1994). A predação de sementes é uma interação direta com importantes repercussões ecológicas e evolutivas, podendo gerar numerosos efeitos sobre o fitness da planta (Andersen 1989, Janzen 1971). Em *Acrocomia aculeata* a predação dos frutos é realizada, principalmente, por coleópteros Bruchinae (Chrysomelidae) e ocorre no endocarpo do fruto (Johnson *et al.*, 1995). Os frutos dessa palmeira são utilizados na alimentação e apresentaram grande potencial para produção de biodiesel. Entretanto, a predação por bruquíneos é capaz de inviabilizar mais de 70% das sementes, diminuindo, assim, o potencial econômico do fruto (Scariot, 1998; Ramos *et al.*, 2001).

OBJETIVOS

O objetivo deste estudo foi testar a hipótese de defesa mediada por fungo, que prediz que frutos de *A. aculeata* colonizados por fungos decompositores influenciam na seleção do sítio de oviposição de Bruchinae.

MATERIAL E MÉTODOS

Foi construída uma arena composta por de um conjunto de três potes transparentes, de dimensões iguais, dispostos em um ângulo de 1200 entre si, conectados a um pote central. Neste havia um cooler posicionado para que o ar circulasse de forma ascendente, garantido a passagem homogênea dos odores pela câmara central. Uma fêmea de *P. cardo* foi colocada na câmara central tendo igual acesso a três opções de escolha: frutos sadios, frutos de contaminados por fungo e um pote vazio (branco). Os ensaios foram conduzidos entre as 17 e 20 horas (horário de maior atividade dos insetos) em Câmara de Fluxo Laminar, sendo o experimento constituído de 40 repetições. As observações foram realizadas a cada 30 minutos até que ocorresse a escolha do inseto. A cada novo ensaio a arena era desinfetada com álcool a 70% v/v seguida de 3 lavagens com água. A seleção das fêmeas ocorreu durante o período de cópula. Os frutos que compuseram a escolha "frutos sadios" foram desinfetados com solução de hipoclorito a 0.8% v/v. Os que compuseram a escolha "frutos colonizados por fungo" foram armazenados em sacos plásticos e deixados em local quente, úmido e escuro por um mês para que os fungos ficassem aparente. Os dados obtidos no experimento foram agrupados de acordo com as repetições e comparados com uma hipótese nula de

escolha aleatória usando teste Qui-quadrado.

RESULTADOS

No experimento, o inseto não respondeu, permanecendo na câmara central pelo tempo máximo de observação, em quatorze das quarenta repetições. Dos insetos que responderam aproximadamente 54% das escolhas ocorreram nos primeiros 30 minutos de observação, ficando as demais escolhas bem divididas entre os tempos. As fêmeas de *P. cardo* mostraram preferência significativa para frutos sadios (x2= 9.5385, P< 0.01). Das 26 repetições em que pudemos observar a resposta do inseto, a frequência para frutos íntegros foi de 62%, contra 23% para frutos colonizados por fungos e 15% que optaram pelo branco. Das escolhas que ocorreram nos primeiros 30 minutos, 64,28% escolheram os frutos sadios e 28,57% optaram pelos frutos fungados mostrando que as mudanças morfológicas causadas pela presença do fungo interferem nos mecanismos utilizados pelos insetos para a localização do fruto.

DISCUSSÃO

Os insetos exercem suas relações ecológicas com o ambiente e com os outros organismos de várias maneiras, sendo uma das mais importantes à comunicação por meio de compostos químicos (Silva et al., 2012). As fêmeas de P. cardo demonstraram clara preferência, após o acasalamento, na escolha de frutos íntegros, sugerindo que a presença dos fungos nos frutos altera o comportamento de oviposição do predador. A presença de fungos em frutos de A. aculeata confere ao propágulo um escape a predação por Bruchinae, diminuindo a disponibilidade dos frutos para o predador. Embora fatores físicos como tipo, textura, tamanho e cores dos frutos estejam envolvidos, a seleção do sítio de oviposição depende primariamente de semioquímicos que influenciam a eficiência do forrageio (Karimzadeh et al., 2013). A ação do fungo sobre o fruto pode gerar uma "camuflagem" química, o que dificulta seu encontro pelo predador. Com isso, o besouro durante o forrageio, submetido a uma grande diversidade de sinais químicos no ambiente natural, não consegue identificar, com a mesma eficácia, frutos que tiveram o padrão de semioquímicos alterado pela presença dos fungos. Alternativamente, os fungos decompositores podem ter um efeito tóxico sobre os ovos de Bruchinae, diminuindo o número de ovos viáveis por ninhada inviabilizando um sítio potencial para reprodução dos besouros.

CONCLUSÃO

Este estudo mostra que essas associações indiretas podem mudar a direção das interações entre predador-presa. A influência de fungos decompositores no comportamento de oviposição de besouros Bruchinae dá margem a novos estudos que se proponham explorar por quais vias tal interação indireta ocorre.

REFERÊNCIAS BIBLIOGRÁFICAS

ABRAMS P. A. Implications of Dynamically Variable Traits for Identifying, Classifying, and Measuring Direct and Indirect Effects in Ecological Communities. The American Naturalist, v.146, n.1, p.112-134.

ANDERSEN A. N. How Important Is Seed Predation to Recruitment in Stable Populations of Long-Lived Perennials? Oecologia, v.81, n.3, p.310-315, 1989.

JANZEN D. H. Seed predation by animals. Annual Review of Ecology and Systematics, v.2, p.465-492, 1971.

JOHNSON C. D.; ZONA S.; NILSSON J. A. Bruchid Beetles and Palm Seeds: Recorded Relationships. Principes, v.39, n.1, p.25-35, 1995.

KARIMZADEH J.; HARDIE J.; WRIGHT D. J. Plant Resistance Affects the Olfactory Response and Parasitism Success of Cotesia vestalis. J Insect Behav, v.26, p.35–50, 2013.

MILLER T. E. Direct and Indirect Species Interactions in an Early Old-Field Plant Community. The American Naturalist, v.143, n.6, p.1007-1025, 1994.

MILLER T. E.; KERFOOT W. C. Redefining indirect effects. in Kerfoot WC, Sih A, eds. Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hanover, N.H, p.33-37, 1987.

PRICE P. W.; BOUTON C. E.; GROSS P.; MCPHERON B. A.; THOMPSON J. N.; WEIS A. E. Interactions among three trophic levels: influence of plants on interactions between herbivores and natural enemies. Annual Review of Ecology and Systematics, v.11, p.41–65, 1980.

RAMOS F. A.; MARTINS I.; FARIAS J. M.; SILVA I. C. S.; COSTA D. C.; MIRANDA A. P. Oviposition and Predation by Speciomerus revoili (Coleoptera, Bruchidae) on seeds of Acrocomia aculeata (Arecaceae) in Brasília, DF, Brazil. Brazilian Journal Biology, v.61, n.3, p.449-454, 2001.

SAARI, S.; SUNDELL, J.; HUITU, O.; HELANDER, M.; KETOJA, E., *et al.* Fungal-Mediated Multitrophic Interactions - Do Grass Endophytes in Diet Protect Voles from Predators? Plos One, v.5, n.3, e9845.doi:10.1371/journal.pone.0009845, 2010.

SCARIOT A. O. Seed Dispersal and Predation of the Palm Acrocomia aculeata. Principes, v.42, n.1, p.5-8, 1998.

SILVA, A. G. DA.; SOUZA, B. H. S. DE.; RODRIGUES, N. E. L.; BOTTEGA, D. B.; BOIÇA JUNIOR, A. L. Interação Tritrófica: Aspectos Gerais E Suas Implicações No Manejo Integrado De Pragas. Nucleus, v.9, n.1, abr.2012.

THOMPSON J. N. The evolution of species interactions. Science, v.284, p.2116-2118, 1999.

TORRES-ALRUIZ M. D.; RODRÍGUEZ D. J. A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes. Ecological Modelling, v.250, p.363–369, 2013.

Agradecimento

Apoio: Unimontes, Petrobrás, Funarbe