

BIOMETRIA DE SEMENTES DE CINQUENTA ESPÉCIES ARBÓREAS NATIVAS DA MATA ATLÂNTICA DO ESTADO DE SÃO PAULO.

Frigieri, F.F.1

Ribeiro, M.F.1; Iwanicki, N.S.1; Ferraz, E.M.1; Potenza, R.F.1; Gandara, F.B.2

- 1 Lab. de Reprodução e Genética de Espécies Arbóreas Dep. de Ciências Florestais, ESALQ USP, Piracicaba S.P.
- 2 Departamento de Ciências Biológicas, ESALQ/USP, Piracicaba S.P. felipefrigieri@hotmail.com

INTRODUÇÃO

O Bioma Mata Atlântica compreende uma grande diversidade de fisionomias vegetais e segundo Myers et al., 2000) já foi perdido cerca de 93% da vegetação original. É crescente a demanda pela recomposição destas formações vegetais degradadas, e para isso estudos na área de tecnologia de sementes envolvendo dados sobre a quantidade de semente por unidade de massa e suas respectivas dimensões, constituem - se como informações base para outras pesquisas. Além disso, é uma informação muito relevante para o setor de sementes e mudas florestais. A semente é a unidade na qual o embrião de uma planta é disperso. Tal unidade permite que o embrião sobreviva durante o intervalo compreendido entre a maturação da semente e o estabelecimento da plântula, dando origem à próxima geração (Perez, 2004). Como aponta Gunn (1981), as sementes podem ser utilizadas na identificação botânica, pois elas apresentam características externas e internas pouco alteradas pelo ambiente. Visto ainda, que as distintas espécies apresentam variação na coloração, forma, tamanho e arranjo superficial (Beltrati, 1992). Além disso, a biometria de sementes pode proporcionar a distinção de espécies do mesmo gênero, e ainda, indicar as características de dispersão e fixação de plântulas, empregada também, na distinção sucessional de espécies florestais ocorrentes nas florestas tropicais (Baskine Baskin, 1998). Desta forma, este trabalho teve como objetivo mensurar e quantificar, respectivamente as dimensões e massa de sementes de cinquenta espécies arbóreas nativas da Mata Atlântica e relacionar os resultados obtidos com os diferentes tipos de síndromes de dispersão. Este estudo faz parte de um trabalho que visa à criação de um "Guia de Plântulas e Sementes de Espécies Arbóreas Nativas da Mata Atlântica". Além dos dados biométricos, o guia conterá imagens das sementes e das fases de desenvolvimento das plântulas e mudas, e informações botânicas de cada espécie.

OBJETIVOS

Este estudo tem como objetivo mensurar as dimensões de sementes de espécies arbóreas nativas da Mata Atlântica e quantificação da massa das mesmas.

MATERIAL E MÉTODOS

O trabalho foi realizado no Laboratório de Biologia Reprodutiva e Genética de Espécies Arbóreas do Departamento de Ciências Florestais da Escola Superior de Agricultura "Luiz de Queiroz" - USP. As sementes foram fornecidas pelo viveiro da CESP (Companhia Energética de São Paulo) e pelo IPEF (Instituto de Pesquisa e Estudos Florestais). A medição das sementes foi feita através da utilização de um paquímetro mecânico. Através desse equipamento mensurou - se o comprimento, largura e espessura das sementes, no entanto, para aquelas que apresentaram formato esférico, mediu - se apenas o diâmetro. Adotamos o comprimento, como a medida corresponde entre o ápice e a

1

base da semente; a largura à medida menor em comparação ao comprimento e, por final, a espessura remete - se à menor medida quando comparada com a largura. A unidade adotada foi centímetros. Realizou - se a medição de trinta diferentes sementes, selecionadas ao acaso para cada espécie. Foram calculadas as médias e a amplitude dos valores para cada medida. A quantificação da massa das sementes foi conseguida com a utilização de uma balança semi analítica, onde, pesaram - se trinta sementes ao acaso de cada espécie. Foram calculadas as médias e a amplitude dos valores para cada medida. Foram pesadas também 100 sementes e utilizando um fator de expansão, foi obtida a quantidade de sementes por kilograma. As espécies foram classificadas quanto à síndrome de dispersão (zoocoria, anemocoria e outras). Foram calculadas as médias das medidas para cada grupo de espécies.

RESULTADOS

Dentre as 50 espécies analisadas, encontramos valores que variaram de 0,31 a 2,29 cm de comprimento, 0,21 a 1,57 cm para a largura, 0,05 a 1,68 cm para a espessura e 0,005 a 3,608 g para o peso. O número de sementes por kilograma variou entre 296 e 155279. A espécie que apresentou o maior comprimento foi Peltogyne angustiflora e o menor foi Croton urucurana. A espécie que apresentou a maior largura foi Peltogyne angustiflora e a menor foi Codia trichotoma. A espécie que apresentou a maior espessura foi Hymenaea courbaril e a menor foi Tabebuia roseo - alba. Sete espécies apresentaram sementes esféricas Sapindus saponaria, Prunus myrtifolia, Rapanea sp. (Capororoca Branca), Guazuma ulmifolia, Psidium sp., Eugenia uniflora, Rapanea sp (Capororoca), sendo a com maior diâmetro Sapindus saponaria (1,03cm) e a com menor Guazuma ulmifolia (0,23cm). A espécie que apresentou a maior massa foi Hymenaea courbaril e a menor foi Guazuma ulmifolia. Vinte e cinco espécies apresentaram síndrome de dispersão por zoocoria e dezoito por anemocoria. As espécies zoocóricas apresentaram comprimento médio de 0,79cm e massa de 0,416g e as anemocóricas comprimento médio de 1,10cm e massa de 0,132g. Estes dados mostram que as sementes anemocóricas são mais leves apesar de apresentarem maior comprimento, o que pode lhes dar uma maior capacidade de planagem (Almeida - Cortez, 2004). A biometria deste grupo de espécies mostra uma grande variação nas medidas tomadas, e que têm relação com diversas características das sementes, como quantidade de reservas, umidade, espessura do tegumento, e que por sua vez, podem influenciar no processo de germinação dessas espécies (Camargo et al., 008).

CONCLUSÃO

As medidas biométricas tomadas apresentaram importantes variações específicas, sendo influenciadas pela síndrome de dispersão.

REFERÊNCIAS

ALMEIDA - CORTEZ, J. S. Dispersão e Banco de Sementes. In: FERREIRA, G. A.; BORGHETTI, F.(orgs.). Germinação Do Básico ao Aplicado. Porto Alegre: Artmed, 2004. p. 225 - 236. BASKIN, C.C.; BASKIN, J.M. 1998. Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press: London. BELTRATI, C.M. Morfologia e anatomia de sementes. Rio Claro: UNESP, Depto. de Botânica/Instituto de Biociências, 1992. 108p. (Apostila Curso de Pós - Graduação). CA-MARGO, J.L.; FERRAZ, I.D.K.; MESQUITA, M.R.; SANTOS, B.A.; BRUM, H.D. Guia de Propágulos e Plântulas da Amazônia. Manaus: INPA, 2008. 168 p. MYERS, N.; MITTERMEIER, R.A.; MITTER-MEIER, C.G.: FONSECA, G.A.B.: KENT J. 2000. Biodiversity hotspots for conservation priorities. *Nature*, v. 403, p.853 - 845. GUNN, C.R. Seed topography in the Fabaceae. Seed Science and Technology, Zürich, v.9, n.3, p.737 - 757, 1981.

PEREZ, S. C. J. G. A. Envoltórios In: FERREIRA, A.G., BORGHETTI, F. (orgs.) Germinação do Básico ao Aplicado. Porto Alegre: Artmed, p. 125 - 146, 2004.