

IMPACTO DE DETRITOS DE BIOMASSA DE MAURITIA FLEXUOSA NO CRESCIMENTO DE PLÂNTULAS E PLANTAS JOVENS EM SEU ENTORNO.

ARAUJO, B. D.

GONÇALVES, A. B.; MARANHÃO, H. L.; AZEVEDO, L. G. E.R. de.

Centro Universitário de Belo Horizonte, Av. Prof. Mário Werneck, 1685 CEP: 30455 - 610 Estoril Belo Horizonte MG; Universidade Federal do Mato Grosso do Sul Cidade Universitária CEP 79070 - 900 Campo Grande MS brunoaraujo.eco@gmail.com; ariadne.gon@gmail.com; helen.maranhao@gmail.com; lucasgabrielescalante@hotmail.com.

INTRODUÇÃO

A mortalidade de árvores causada por competição ou fatores abióticos, como o vento, contribuem para o reservatório de detritos de biomassa. Clark & Clark (1991) apresentam resultados que sugerem que, para árvores de florestas tropicais, a importância dos fatores bióticos como agentes de mortalidade é inversamente proporcional em relação ao aumento do tamanho da plântula, e a importância dos danos físicos como um agente de mortalidade aumenta proporcionalmente ao tamanho plântula (Clark & Clark, 1991).

O detrito vegetal é um fator importante que afeta a dinâmica e a organização da comunidade muito além de seu papel, geralmente reconhecido, como um banco temporário de nutrientes (Facelli & Pickett, 1991).

A serapilheira pode alterar a demografia das diversas populações, exercendo um efeito importante sobre o sucesso de plantas individuais, afetando a probabilidade de germinação e permanência da planta (Facelli & Pickett, 1991).

Ao redor da Mauritia flexuosa, plântulas e plantas jovens enfrentam uma série de eventos potencialmente letais em suas vidas devido aos seus aspectos físicos, que são causados pelo impacto da queda de espatas, folhas e cachos de frutos da palmeira. Os danos físicos são agentes importantes de mortalidade de árvores jovens em muitas florestas tropicais (Clark et al., , 2002). O acúmulo de detritos se relaciona com aspectos ecológicos para desenvolvimento e sobrevivência de M. flexuosa no ecossistema. A densidade desse acúmulo varia de acordo com a distância do tronco da planta

mãe (Keller et al., 2004).

OBJETIVOS

Avaliar o efeito da queda de detritos de Mauritia flexuosa no crescimento de plântulas e plantas jovens em seu entorno na Reserva Particular do Patrimônio Natural do campus da Universidade Federal do Mato Grosso do Sul (RPPN - UFMS), em uma área de mata secundária, nos meses de agosto e setembro de 2010.

MATERIAL E MÉTODOS

A análise do impacto de detritos de Mauritia flexuosa sobre o desenvolvimento de plântulas e plantas jovens à sua volta se deu através de transectos de 10 m, com parcelas de 1 m², a partir da planta mãe M. flexuosa, em direção oposta ao exemplar mais próximo, evitando a interferência de espécies localizadas em áreas de alta agregação de indivíduos. Foi realizada uma amostragem de 53 indivíduos, enumerados para não haver repetições. Foi medido o raio da copa da planta mãe; quantificado o número de plântulas e plantas jovens, sem restrição de espécie; e estimada a porcentagem de detritos de biomassa de buriti na área de cada parcela.

RESULTADOS

Os resultados demonstraram o efeito negativo da queda de detritos biomassa de buriti sobre o desenvolvimento

1

de plântulas e jovens da área amostrada. Foi observado que quanto maior a distância da planta parental, menor a porcentagem de detritos de biomassa. E o número de plantas jovens aumenta conforme o afastamento da planta parental. Os dados demonstram que há o aumento do número de plântulas conforme o distanciamento da planta parental, porém com oscilações. Sendo assim, foi corroborada a hipótese de que a presença de detritos de biomassa influencia negativamente o desenvolvimento de plantas ao seu entorno. Os detritos causam uma diminuição do recrutamento do número de indivíduos, assim como um efeito significativo na produção de biomassa (Pierson & Mack, 1990), sendo, portanto, um fator limitante para a regeneração da floresta.

Em um experimento feito por Myster (1994), foi apresentado que detritos inibem significantemente o desenvolvimento de plântulas, sugerindo que a serrapilheira é responsável para que não ocorra o desenvolvimento de plantas. Segundo Becerra et al., (2004), a presença de serrapilheira para a germinação das sementes é mais importante do que para a sobrevivência das plântulas, resultando em um efeito positivo, o que contrasta com a maioria dos outros estudos, incluindo este.

A falta de luz também pode ser um fator crítico para a sobrevivência das plântulas, após a germinação (Spacková $et\ al.$, , 1998), implicando no seu desenvolvimento na presença de serrapilheira, como notado neste estudo, onde havia nenhuma ou uma pequena porcentagem de plântulas remanescentes. A competição por recursos é, muitas vezes, um fator importante para redução da diversidade de plantas em comunidades produtivas, principalmente por causa da densa copa que limita a luz disponível para as plantas (Xiong & Nilsson, 1999), visto que, devido ao comprimento do raio da copa de M. flexuosa, em média, de 3 a 5 m, foi encontrada uma variedade muito pequena de espécies de plântulas ou plantas jovens embaixo da sombra da copa.

CONCLUSÃO

Com os resultados obtidos, foi verificado que há impacto negativo dos detritos de biomassa sobre o número

de indivíduos amostrados, sendo que a presença de detritos influencia diretamente nas variáveis consideradas.

REFERÊNCIAS

BECERRA, P. I., CELIS - DIEZ, J. L. & BUSTA-MANTE, R. O. 2004. Effects of leaf litter and precipitation on germination and seedling survival of the endangered tree *Beilschmiedia mersii*. Applied Vegetation Science. 7: 253 - 257.

CLARK, D. B., CLARK, D. A., BROWN, S., OBER-BAUER, S. F. & VELDKAMP, E. 2002. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. *Forest ecology and management*. 164: 237 - 248.

CLARK, D. B. & CLARK, D. A. 1991. The impact of physical damage on canopy tree regeneration in tropical rain forest. *Journal of Ecology*, 79: 447 457.

FACELLI, J. M. & PICKETT, S. T. A. 1991. Plant Litter: Its Dynamics and Effects on Plant Community Structure. *The Botanical Review*, n. 1, 57: 1 - 32.

KELLER, M., PALACE, M., ASNERZ, G. P., PEREIRA, R. J. R. & SILVA, J. N. M. 2004. Coarse Woody Debris in Undisturbed and Logged Forests in the Eastern Brazilian Amazon. *Global Change Biology*, 10: 784 - 795.

MYSTER, R.W. 2004. Contrasting litter effects on old field tree germination and emergence. *Vegetatio*, 144: 169174

PIERSON, E. A & MACK, R. N. 1990. The population biology of *Bromus tectorum* in forests: effect of disturbance, grazing, and litter in seedling establishment and reproduction. *Oecologia*, 84: 526 - 533.

SPACKOVÁ, I; KOROTOVÁ, I. & LEPS, J. 1998. Sensitivity of seedling recruitment to moss, litter and dominant removal in an Oligothrophic Wet Meadow. *Folia Geobotanica*, 33: 17 - 30.

XIONG, S. & NILSSON, C. 1999. The effects of plant litter on vegetation: a meta - analysis. *Journal of Ecology*, 87: 984 - 994.