

EFEITO DAS MUDANÇAS CLIMÁTICAS SOBRE GIRINOS DE POÇAS DE BAIXADA DA MATA ATLÂNTICA DO RIO DE JANEIRO.

Ana Luiza Lima; Leandro Talione Sabagh; Nicholas A. C. Marino; Vinicius Fortes Farjalla

Universidade Federal do Rio de Janeiro (UFRJ) - Departamento de Ecologia

INTRODUCÃO

Entender os efeitos das mudanças climáticas é uma preocupação atual dentro da ecologia. Em ambientes tropicais essas pesquisas possuem uma motivação a mais. Os trópicos são marcados por temperaturas médias maiores e, devido isso, seus organismos estariam mais próximos de seus limites térmicos (Dillon *et al.* 2010; Simon *et al.* 2015). As projeções futuras decorrentes das mudanças climáticas no território brasileiro indicam diferenças na temperatura e no regime de chuvas (IPCC 2014). A temperatura é o fator primário responsável pelo desenvolvimento de muitos organismos, principalmente ectotérmicos, tendo o seu metabolismo atrelado à temperatura ambiental. Sendo assim, definir o grau de sensibilidade dos organismos ao aumento de temperatura torna-se importante para o estudo das comunidades. O tamanho corporal é um fator que afeta a sensibilidade dos organismos, sendo indivíduos maiores caracterizados como mais suscetíveis ao aumento da temperatura (Brown *et al.* 2004). No entanto, esses estudos têm como enfoque organismos terrestres e não levam em consideração a identidade dos organismos testados.

OBJETIVO

Portanto, este estudo pretende buscar, se, e como, a identidade e o tamanho corporal do organismo influenciam na sua temperatura crítica máxima, tendo como foco a forma imatura dos anuros (girinos) que vivem em ambientes aquáticos.

MATERIAIS E MÉTODOS

Os ensaios de temperatura crítica máxima (temperatura na qual os indivíduos estariam ecologicamente mortos, ou seja, desmaiados e não funcionalmente ativos no ecossistema) foram feitos com girinos (10 indivíduos por espécie) das poças de baixada da Reserva Ecológica do Guapiaçu (REGUA). Para determinação da tolerância ao aquecimento, os girinos foram expostos a um rápido aumento de temperatura (2,0 °C a cada 5 minutos, a partir de 25°C) em recipientes individuais (tubos Falcon 50 ml) imersos em um banho-maria(Becker de 3L) com temperatura controlada tendo, dessa forma uma rampa de aquecimento e determinando o CTMáx de cada indivíduo coletado. Após o experimento o indivíduo permanecia em observação por 24h para que a medida fosse considerada válida e, após isso, seu tamanho, biomassa e sua identificação eram realizados. As análises foram feitas a partir, de uma análise de variância (ANOVA), ou seja, uma regressão linear que considerou os efeitos principais de duas variáveis preditoras, a espécie e o tamanho do corpo incluindo os efeitos delas juntas e separadas sobre a temperatura crítica máxima dos indivíduos.

DISCUSSÃO E RESULTADOS

Encontramos que, ao se tratar dos girinos, a identidade do organismo teve um papel determinante em seu CTMáx (F=7,7344; P=0,7837e-6) enquanto o tamanho corporal não demonstrou uma relação significativa(F=0,2873; P=0,5937). Ao se tratar de ectotérmicos,que possuem sua taxa metabólica atrelada a temperatura ambiental, é previsto que os mesmos terão seu metabolismo acelerado com o aumento de temperatura e, devido isso, os organismos menores seriam os que responderiam melhor a esse aumento. Além disso, podendo até, ocorrer uma tendência na diminuição média no tamanho dos indivíduos, devido o aumento na taxa de desenvolvimento como resposta a mudança ambiental(Sheridan e Bickford 2011). Porém, estudos atuais demonstram que essa relação não é um padrão global - tendo diferenças na magnitude e no direcionamento de resposta – sendo dependente das escalas utilizadas (Gardner *et al.* 2011). Esse estudo demonstrou um exemplo em que o tamanho corporal não deteve esse poder preditivo sobre a tolerância ao aumento de temperatura.

CONCLUSÃO

Sendo assim, para os girinos, a identidade dos organismos é mais preditiva de sua temperatura crítica máxima e ,consequentemente, de sua resistência as mudanças climáticas globais do que o tamanho corporal. É importante que em estudos futuros, análises filogenética sejam feitas para buscar uma relação entre a distância filogenética e a sensibilidade a temperatura. Além disso, que busquem identificar quais outras características das espécies podem explicar os padrões de sensibilidade a temperatura encontrados.

1

REFERÊNCIAS BIBLIOGRÁFICAS

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771-1789.

Dillon, Michael E., George Wang, and Raymond B. Huey. "Global metabolic impacts of recent climate warming." Nature467.7316 (2010): 704.

Gardner, Janet L., *et al.* "Declining body size: a third universal response to warming?." Trends in ecology&evolution 26.6 (2011): 285-291.

Sheridan, Jennifer A., and David Bickford. "Shrinking body size as an ecological response to climate change." Natureclimatechange 1.8 (2011): 401.

Simon, Monique Nouailhetas, Pedro Leite Ribeiro, and Carlos Arturo Navas. "Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction." Journal of thermal biology 48 (2015): 36-44.

AGRADECIMENTOS

Agradecemos a Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) da qual sou bolsista de Iniciação Científica e que possibilitou o desenvolvimento desse projeto.