

INFLUÊNCIAS DOS NINHOS DA FORMIGA SAÚVA NA NUTRIÇÃO E CRESCIMENTO DA VEGETAÇÃO EM FLORESTA DE TRANSIÇÃO AMAZÔNIA-CERRADO.

Karine S. Carvalho¹, Paulo Moutinho², Leonel da S. L. Sternberg³, Marcelo Z. Moreira⁴

¹Departamento de Biologia, Universidade Estadual do Sudoeste da Bahia, UESB, Jequié-BA, Brasil ²Instituto de Pesquisa Ambiental da Amazônia, IPAM, Belém-PA, Brasil. ³Departamento de Biologia, Universidade de Miami, Coral Gables,-FL, EUA. ⁴Centro de Energia Nuclear na Agricultura, CENA, Universidade de São Paulo, USP, Piracicaba, SP, Brasil.

INTRODUÇÃO

Os ninhos de saúva são reconhecidos como uma das mais importantes perturbações naturais dos ecossistemas neotropicais, gerando mosaicos de vegetação e afetando sua estrutura, composição e dinâmica (Garrettson et al., 1998; Farji-Brenner e Medina, 2000). O hábito de cultivar jardim de fungo dessas formigas, induz a concentração local de grandes quantidades de matéria orgânica e aumenta a disponibilidade de nutrientes para as plantas adjacentes (Moutinho et al 2003). No entanto, a utilização direta dos nutrientes estocados nos ninhos de saúva foi demonstrada somente recentemente (Sternberg et al., 2006) e ainda não existem estudos para comparação. Além disso, a escala temporal ou espacial dos possíveis benefícios nutricionais que os ninhos possam proporcionar as plantas, continua inexistente.

Nesse sentido, o objetivo geral desse estudo foi identificar os efeitos dos ninhos de saúva sobre a dinâmica de crescimento da vegetação de uma floresta de transição amazônica. Especificamente, verificou-se se: 1recrutamento de plântulas sobre os ninhos de saúva é menor se comparado ao chão da floresta; 2- plantas estabelecidas próximas aos ninhos de saúva absorvem mais nutrientes disponíveis e concentrados em suas câmeras subterrâneas que plantas distantes.

MATERIAL E MÉTODOS

A área de estudo está localizada na Fazenda Tanguro (13.04°S, 52.23°W), município de Querência- MT, ao sul da Bacia Amazônica.

Para o teste do recrutamento de plântulas, foram estabelecidas três parcelas de um m² sobre 18 ninhos e distante 15 m destes. Todas as plântulas

que caíram nestas parcelas foram contadas e morfo-tipadas. Para determinar a influência dos ninhos sobre a nutrição de plantas, foi utilizado o isótopo estável Nitrogênio¹⁵ (N¹⁵) como traçador. Folhas impregnadas com essas substância foram oferecidas às saúvas que as transportaram para dentro dos ninhos. Desta forma, o N¹⁵ foi incorporado ao jardim de fungo e posteriormente, aos rejeitos da colônia em "lixeiras", disponível para absorção das plantas próximas aos ninhos. A identificação do N¹⁵ nas folhas das plantas que o absorveram, foi feita por análises isotópicas no Laboratório no Centro de Energia Nuclear para a Agricultura, CENA e na Universidade de Miami.

RESULTADOS E DISCUSSÕES

O número médio de plântulas sobre os ninhos de saúvas e no chão da floresta distante 15 m dos ninhos, foi respectivamente, 9,47 (±7,07) e 17,8 (±14,8). O chão da floresta apresentou uma maior abundância de plântulas por m² quando comparado com os ninhos (Teste t= -2,795; n= 23 P= 0,011). A riqueza de espécies de plântulas também foi maior distante dos ninhos. O número médio de morfo-espécies de plântulas por m² sobre os ninhos foi 4,76 (±3,10) e no chão da floresta, 10,2 (±4,8) (Teste t= -4,853; n= 23; P= 0,000). Esses resultados concordam com os de Farji-Brenner e Medina (2000) e Garretson et al. (1998) que ninhos são locais limpos de vegetação e serrapilheira e têm suas plântulas soterradas pela atividade de escavação das formigas. Os ninhos são locais diferenciados para o recrutamento e estabelecimento de plantas, e esses processos dependem de fatores como localização do lixo descartado (dependente da espécie de saúva), heterogeneidade espacial, limitação de dispersão das plantas e o "pool" da vegetação local. Um fator ainda não esclarecido é se os adultos também são recrutados desproporcionalmente já que a taxa de mortalidade em plântulas pode ser muito alta.

As plantas localizadas até 10 m de distância dos ninhos (plantas tratamento) apresentaram níveis de Nitrogênio 15 (" N^{15}) mais altos (10,89 ± 51,94‰, n= 156) que aquelas distantes dos ninhos (plantas controle; $2,62 \pm 2,89\%$, n= 156) (Teste Mann-Whitney = 16774,000; d.f = 1; pd" 0,000). Esses dados mostram que a proximidade de plantas aos ninhos de saúva pode facilitar a reutilização dos nutrientes provenientes do metabolismo das colônias desses ninhos. Quanto ao tempo de permanência de altos níveis de N¹⁵ nessas plantas, registrou-se um período de aproximadamente seis meses (Teste Kruskal-Wallis = 80,850; d.f = 5; p d"0,000; n = 312). Segundo Haines (1968), o afunilamento de nutrientes através da colônia com subsequente absorção e reciclagem pela vegetação circundante, pode variar com a forma de descarte dos dejetos da colônia, sendo que a posição do lençol freático pode influenciar nos processos de lixiviação. Além disso, as altas taxas de "turnover" das colônias podem aumentar a heterogeneidade espacial e temporal de nutrientes.

CONCLUSÃO

Independentemente de os ninhos de saúva afetarem a floresta ao nível de ecossistema, localmente eles estão envolvidos em diversos processos ecológicos que podem afetar a produtividade e a composição das florestas neotropicais.

(Bolsas de Estudo para Conservação da Amazônia, BECA- Insitituto Internacional de Educação do Brasil, IEB e Fundação de Amparo a Pesquisa do Estado da Bahia, Fapesb.)

REFERÊNCIAS BIBLIOGRÁFICAS

FARJI-BRENNER, A.G. & MEDINA, C. 2000. The importance of where to dump the refuse: seed banks and fine roots in nest of the leaf-cutting ants *Atta cephalotes* and *A. colombica.Biotropica*, 32: 120-126.

Garrettson, M., STETZEL, J.F., HALPERN, B.S., HEARN, D.J., LUCEY, B.T. & McKONE, J. 1998. Diversity and abundance of understory plants on active and abandoned nest of leaf-cutting ants (*Atta cephalotes*) in a Costa Rica rain forest. *J. Trop. Ecol.*, 14: 17-26.

- HAINES, B.L. 1978. Element and energy flows through colonies of the leaf-cutting ant, *Atta colombica*, in Panama. *Biotropica*, 10: 270-277.
- MOUTINHO, P., NEPSTAD, D.C. & DAVIDSON, E.A. 2003. Influence of Leaf-Cutting Ant Nest on Secundary Forest Growth and Soil Properties en Amazonia. *Ecology*, 84: 265-1276.
- STERNBERG, L da S.L. et al. 2006. Plants use macronutrients accumulated in leaf-cutting ant nests. *Proc. R. Soc.B*, 1: 1-7.