

USO DE MICROCOSMOS NATURAIS NA DETERMINAÇÃO DOS FATORES QUE INFLUENCIAM A RIQUEZA DE COMUNIDADES ZOOPLANCTÔNICAS

Viviane Dib

Fernanda D. Azevedo(1); Nicholas Marino(1); Paloma M. Lopes(1); Reinaldo Bozelli(1); Vinicius F. Farjalla(1)

(1) Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Ecologia, CCS, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Brasil. viviane _dib@yahoo.com.br

INTRODUÇÃO

Um dos principais descritores estruturais de uma comunidade natural é o número de espécies que ela apresenta. Este número pode sofrer influência tanto de fatores ambientais como de fatores bióticos e o entendimento do papel relativo desses fatores torna - se então ponto fundamental na ecologia. O estudo de comunidades zooplanctônicas, por sua vez, é extremamente importante, já que estas representam um elo entre o fitoplâncton e os consumidores de níveis tróficos superiores, além de atuarem na alça microbiana em teias tróficas aquáticas.

O uso de microcosmos naturais como modelo para o estudo de comunidades, vem sendo cada vez mais realizado. Sua eficiência foi testada por Srivastava et al. que concluiu que de fato microcosmos naturais são tão versáteis quanto os artificiais e tão complexos e biologicamente realísticos quanto outros sistemas naturais. Uma classe de microcosmos chamada phytotelmata tem recebido bastante atenção e é representada por estruturas presentes em vegetais que são capazes de acumular água da chuva, como plantas carnívoras, buracos em arvores, internós de bambus e bromélias - tanque. O tanque formado por essas estruturas armazena também matéria orgânica vinda da vegetação de entorno e promove um refúgio espacial para uma rica fauna de vertebrados e invertebrados. As comunidades que habitam tanques de bromélias estão sujeitas a influências de fatores ambientais assim como as que habitam corpos d'água maiores (como lagos ou lagoas).

Uma característica particular do estudo de comunidades em bromélias - tanque é a natureza física discreta do habitat. Isso permite a total enumeração dos indivíduos e a definição por completo da comunidade (Armbruster *et al.*, 2002). Além disso, podemos destacar a alta replicabilidade do modelo que oferece um maior número amostral sob influência do mesmo tipo de ecossistema (Kitching, 2001).

OBJETIVOS

Este trabalho tem como objetivo verificar quais são as principais variáveis ambientais responsáveis pela variação na riqueza de espécies de comunidades zooplanctônicas que habitam tanques de bromélias.

MATERIAL E MÉTODOS

Área de estudo

Este estudo foi realizado no Parque Nacional da Restinga de Jurubatiba (22^000 'S, 41^045 'W), que está localizado no Estado do Rio de Janeiro, e abrange os municípios de Macaé, Carapebus e Quissamã. O clima região da restinga de Jurubatiba é seco e frio dos meses de abril a outubro e úmido e quente nos meses de novembro a março, apresentando precipitação sazonal intensa entre os meses de verão (dezembro, janeiro e fevereiro) e primavera (setembro, outubro e novembro). O ponto de coleta situa - se na região de formação arbustiva aberta de Clusia, próxima ao 1^0 braço da lagoa Cabiúnas.

Procedimento amostral

Foram selecionadas quatro espécies de bromélias (Aechmea lingulata, Aechmea nudicaulis, Neoregelia cruenta e Vriesia neoglutinosa.), onde foram realizadas as coletas das comunidades zooplanctônicas. Cinqüenta exemplares de cada espécie foram marcados e numerados, totalizando 200 plantas. Dentre essas, foram sorteadas aleatoriamente 56 que seriam utilizadas para o estudo (14 de cada espécie). A cada dia realizava - se um novo sorteio para se determinar quais bromélias seriam amostradas.

Em campo, mensuramos a temperatura máxima de cada bromélia ao sol de meio dia (com auxílio de um termômetro) e determinamos o diâmetro e o número de copos capazes de armazenar água. Feito isso, a água dos tanques era retirada com um sugador e seu volume medido com uma proveta. A água era então armazenada em uma garrafa de polietileno de 1L e colocada à sombra. Finalmente, a bromélia era

1

retirada do local e armazenada em um saco plástico, para posteriores mensurações de volume máximo potencial.

Procedimento laboratorial

No laboratório, os valores de turbidez e clorofila - a das amostras foram mensurados com o auxílio de um Fluorímetro/Turbidímetro de campo (Acquafluor®) e os valores de pH foram mensurados através de um pHmetro portátil (pHmetro de campo portátil Digimed). Com o auxílio de uma proveta de 1L, o volume máximo potencial de cada bromélia foi medido enchendo - a com água comum até que o líquido extravasasse das folhas.

A água foi então filtrada em rede de malha de 50 μ m para separação dos organismos zooplanctônicos, que foram fixados em formol açucarado com solução final de 5%. Nas amostras com quantidade elevada de material em suspensão, foi usado o corante Rosa de Bengala para melhor observação durante a contagem e identificação das espécies. As amostras foram analisadas em sua totalidade em câmara aberta, com auxilio de um estereoscópio Olympus. Neste estudo serão considerados apenas os grandes grupos zooplanctônicos: Rotifera, Cladocera e Copepoda (Calanoida e Cyclopoida), e os organismos presentes serão identificados até o nível de espécie.

Análise dos dados

Uma Análise de Componentes Principais (ACP) com as variáveis limnológicas foi utilizada para observar gradientes ambientais entre as bromélias das diferentes espécies, assim como a relação entre elas. O Critério de Informação de Akaike foi usado para examinar a relação entre a riqueza de espécies das comunidades zooplanctônicas e as variáveis limnológicas.

RESULTADOS

Os resultados indicaram que as diferentes espécies de bromélias se agrupam em relação às variáveis mensuradas, mostrando a importância da identidade de cada uma para a estruturação das comunidades faunísticas ali presentes.

Aechmea nudicaulis mostrou - se relacionada às maiores temperaturas e à maior razão entre número de copos e volume de água. Isso pode ser explicado pelo fato de que esta é uma espécie típica de sol, com baixa capacidade de acumular água. A temperatura máxima que uma bromélia neste ambiente atinge pode determinar a composição de espécies encontradas em seu interior, já que a presença de um organismo em um determinado local depende de sua capacidade de resistir ou tolerar os "máximos" e "mínimos" impostos pelo ambiente (Lopez & Rios, 2001).

Aechmea lingulata relacionou - se principalmente com o maior diâmetro e maior volume. Esta espécie apresenta as maiores dimensões e a maior capacidade de acumular água quando comparada com as outras. Já Vriesia neoglutinosa relacionou - se ao maior número de copos capazes de armazenar água (que pode ser considerada uma medida de complexidade de habitat).

O diâmetro da planta e o número de copos capazes de armazenar água foram selecionados pelo Critério de Informação de Akaike como os melhores descritores da riqueza de espécies das comunidades zooplanctônicas (r $^2\!=\!0,\!214$). O diâmetro da planta mostrou - se intimamente relacionado ao volume. Logo, as plantas com maior diâmetro apresentariam os maiores volumes, podendo abrigar mais espécies de acordo com a relação espécie - área (McArthur & Wilson, 1967). A relação positiva entre riqueza e número de copos reforça a idéia de que a heterogeneidade espacial é um fator determinante para a diversidade em comunidades ecológicas, já que um aumento no número de habitats leva a uma expansão no número de dimensões de nicho (MacArthur & MacArthur, 1961).

CONCLUSÃO

As principais variáveis ambientais que influenciam a riqueza de espécies zooplânctônicas que habitam bromélias - tanque são o diâmetro da planta e o número de copos capazes de acumular água da chuva. Isso nos leva a concluir que a estrutura física do habitat, neste caso, é o principal fator local que pode promover ou limitar a riqueza das comunidades. As espécies de bromélias escolhidas para o estudo apresentam arquiteturas diferentes, por isso podem também influenciar a riqueza das comunidades que as habitam.

Por fim, nossos resultados corroboram com a idéia de que as bromélias - tanque podem promover um modelo útil e de fácil aplicação para o estudo de comunidades em habitats tropicais.

Agradecimentos

À PETROBRAS e à PIBIC pelo financiamento do trabalho e ao NUPEM/UFRJ pela estadia durante a coleta.

REFERÊNCIAS

Armbruster, P., R.A. Hutchinson & P. Cotgreave. Factor influencing community structure in a South American tank bromeliad fauna, *Oikos*, 96: 225 - 234, 2002.

Kitching, R.L. Food Webs in Phytotelmata: "Bottom - up" and "Top - down" explanations for community structure. *Annual Review of Entomology*, 46:729 - 760, 2001.

Lopez, L.C.S. & R.I. Rios. Phytotelmata community distribution in tanks of shaded and sun exposed terrestrial bromeliads from Restinga Vegetation. *Selbyana*, 22(2):219 - 224, 2001.

MacArthur, R. H. & MacArthur, J. On bird species diversity. $Ecology,\ 42:\ 594$ -

598, 1961.

MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography, *Princeton University Press*. Princeton, 1997. Srivastava, D. S., J. Kolasa, J. Bengtsson, A. Gonzalez, S. P. Lawler, T. E. Miller, P. Munguia, T. Romanuk, D. C. Schneider and M. K. Trzcinski. Are natural microcosms useful model systems for ecology?. *TRENDS in Ecology and Evolution*, 19:379 - 384, 2004.